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Abstract. A scene text spotter is composed of text detection and recog-
nition modules. Many studies have been conducted to unify these mod-
ules into an end-to-end trainable model to achieve better performance.
A typical architecture places detection and recognition modules into sep-
arate branches, and a RoI pooling is commonly used to let the branches
share a visual feature. However, there still exists a chance of establishing
a more complimentary connection between the modules when adopting
recognizer that uses attention-based decoder and detector that repre-
sents spatial information of the character regions. This is possible since
the two modules share a common sub-task which is to find the location
of the character regions. Based on the insight, we construct a tightly
coupled single pipeline model. This architecture is formed by utilizing
detection outputs in the recognizer and propagating the recognition loss
through the detection stage. The use of character score map helps the
recognizer attend better to the character center points, and the recogni-
tion loss propagation to the detector module enhances the localization of
the character regions. Also, a strengthened sharing stage allows feature
rectification and boundary localization of arbitrary-shaped text regions.
Extensive experiments demonstrate state-of-the-art performance in pub-
licly available straight and curved benchmark dataset.

Keywords: Optical character recognition (OCR) · Character Region
Attention · Text spotting · Scene text detection · Scene text recognition

1 Introduction

Scene text spotting, including text detection and recognition, has recently
attracted much attention because of its variety of applications in instant trans-
lation, image retrieval, and scene parsing. Although existing text detectors and
recognizers work well on horizontal texts, it still remains as a challenge when it
comes to spotting curved text instances in scene images.

To spot curved texts in an image, a classic method is to cascade existing
detection and recognition models to manage text instances on each side. The
detectors [2,31,32] attempt to capture the geometric attributes of curved texts
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Fig. 1. Concept of the proposed method. The character region feature from the detector
is used as an input character attention feature to the recognizer. Having a tightly
coupled architecture lets the recognition loss flow through the whole network.

by applying complicated post-processing techniques, and the recognizers apply
multi-directional encoding [6] or take rectification modules [11,37,46] to enhance
the accuracy of the recognizer on curved texts.

As deep learning advanced, researches have been made to combine detectors
and recognizers into a jointly trainable end-to-end network [14,29]. Having a
unified model not only provides efficiency in the size and speed of the model, but
also helps the model learn a shared feature that pulls up the overall performance.
To gain benefit from this property, attempts have also been made to handle
curved text instances using an end-to-end model [10,32,34,44]. However, most
of the existing works only adopt a RoI pooling to share low-level feature layers
between detection and recognition branches. In the training phase, instead of
training the whole network, only shared feature layers are trained using both
detection and recognition losses.

As shown in Fig. 1, we propose a novel end-to-end Character Region Attention
For Text Spotting model, referred to as CRAFTS. Instead of isolating detection
and recognition modules in two separate branches, we form a single pipeline
by establishing a complimentary connection between the modules. We observe
that recognizer [1] using attention-based decoder and detector [2] encapsulat-
ing character spatial information share a common sub-task which is to localize
character regions. By tightly integrating the two modules, the outputs from the
detection stage helps recognizer attend better to the character center points, and
loss propagated from recognizer to detector stage enhances the localization of
the character regions. Furthermore, the network is able to maximize the qual-
ity of the feature representation used in the common sub-tasks. To best of our
knowledge, this is the first end-to-end work that constructs a tightly coupled
loss propagation.

The summary of our contribution follows; (1) We propose an end-to-end
network that could detect and recognize arbitrary-shaped texts. (2) We construct
a complementary relationship between the modules by utilizing spatial character
information from the detector on the rectification and recognition module. (3) We
establish a single pipeline by propagating the recognition loss throughout all the
features in the network. (4) We achieve the state-of-the-art performances in IC13,
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IC15, IC19-MLT, and TotalText [7,19,20,33] datasets that contain numerous
horizontal, curved and multilingual texts.

2 Related Work

Text Detection and Recognition Methods. Detection networks use regres-
sion based [16,24,25,48] or segmentation based [9,31,43,45] methods to produce
text bounding boxes. Some recent methods like [17,26,47] take Mask-RCNN [13]
as the base network and gain advantages from both regression and segmentation
methods by employing multi-task learning. In terms of units for text detection,
all methods could also be sub-categorized depending on the use of word-level or
character-level[2,16] predictions.

Text recognizers typically adopt CNN-based feature extractor and RNN
based sequence generator, and are categorized by their sequence generators;
connectionist temporal classification (CTC) [35] and attention-based sequen-
tial decoder [21,36]. Detection model provides information of the text regions,
but it is still a challenge for the recognizer to extract useful information in
arbitrary-shaped texts. To help recognition networks handle irregular texts, some
researches [28,36,37] utilize spatial transformer network (STN)[18]. Also, the
papers [11,46] further extend the use of STN by iterative executing the rectifica-
tion method. These studies show that running STN recursively helps recognizer
extract useful features in extremely curved texts. In [27], Recurrent RoIWarp
Layer was proposed to crop individual characters before recognizing them. The
work proves that the task of finding a character region is closely related to the
attention mechanism used in the attention-based decoder.

One way to construct a text spotting model is to sequentially place detec-
tion and recognition networks. A well known two-staged architecture couples
TextBox++ [24] detector and CRNN [35] recognizer. With its simplicity, the
method achieves favorable results.

End-to-End Using RNN-Based Recognizer. EAA [14] and FOTS[29] are
end-to-end models based on EAST detector [49]. The difference between these
two networks lies in the recognizer. The FOTS model uses CTC decoder [35],
and the EAA model uses attention decoder [36]. Both works implement an affine
transformation layer to pool the shared feature. The proposed affine transfor-
mation works well on horizontal texts, but shows limitations when handling
arbitrary-shaped texts. TextNet [42] proposed a spatial-aware text recognizer
with perspective-RoI transformation in the feature pooling layer. The network
keeps an RNN layer to recognize a sequence of text in the 2D feature map,
but due to the lack of expressively of the quadrangles, the network still shows
limitations when detecting curved texts.

Qin et al. [34] proposed a Mask-RCNN [13] based end-to-end network. Given
the box proposals, features are pooled from the shared layer and the ROI-
masking layer is used to filter out the background clutters. The proposed method
increases its performance by ensuring attention only in the text region. Busta
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et al. proposed Deep TextSpotter [3] network and extended their work in E2E-
MLT [4]. The network is composed of FPN based detector and a CTC-based
recognizer. The model predicts multiple languages in an end-to-end manner.

End-to-End Using CNN-Based Recognizer. Most CNN-based models that
recognize texts in character level have advantages when handling arbitrary-
shaped texts. MaskTextSpotter [32] is a model that recognizes text using a seg-
mentation approach. Although it has strengths in detecting and recognizing indi-
vidual characters, it is difficult to train the network since character-level anno-
tations are usually not provided in the public datasets. CharNet [44] is another
segmentation-based method that makes character level predictions. The model
is trained in a weakly-supervised manner to overcome the lack of character-level
annotations. During training, the method performs iterative character detection
to create pseudo-ground-truths.

While segmentation-based recognizers have shown great success, the method
suffers when the number of target characters increases. Segmentation based mod-
els require more output channels as the number of character sets grow, and this
increases memory requirements. The journal version of MaskTextSpotter [23]
expands the character set to handle multiple languages, but the authors added
a RNN-based decoder instead of using their initially proposed CNN-based rec-
ognizer. Another limitation of segmentation-based recognizer is the lack of con-
textual information in the recognition branch. Due to the absence of sequential
modeling like RNNs, the accuracy of the model drops under noisy images.

TextDragon [10] is another segmentation-based method that localize and rec-
ognize text instances. However, a predicted character segment is not guaranteed
to cover a single character region. To solve the issue, the model incorporates
CTC to remove overlapping characters. The network shows good detection per-
formance but shows limitations in the recognizer due to the lack of sequential
modeling.

3 Methodology

3.1 Overview

Proposed CRAFTS network can be divided into three stages; detection stage,
sharing stage, and recognition stage. A detailed pipeline of the network is illus-
trated in Fig. 2. Detection stage takes an input image and localizes oriented text
boxes. Sharing stage then pools backbone high-level features and detector out-
puts. The pooled features are then rectified using the rectification module, and
are concatenated together to form a character attended feature. In the recog-
nition stage, attention-based decoder predicts text labels using the character
attended feature. Finally, a simple post-processing technique is optionally used
for better visualization.
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3.2 Detection Stage

CRAFT detector [2] is selected as a base network because of its capability of
representing semantic information of the character regions. The outputs of the
CRAFT network represent center probability of character regions and linkage
between them. We contemplate that this character centeredness information can
be used to support the attention module in the recognizer since both modules aim
to localize the center position of characters. In this work, we make three changes
in the original CRAFT model; backbone replacement, link representation, and
orientation estimation.

Fig. 2. Schematic overview of CRAFTS pipeline.

Backbone Replacement. Recent studies show that the use of ResNet50 cap-
tures well-defined feature representations of both the detector and the recognizer
[1,30]. We therefore replace the backbone of the network from VGG-16 [40] to
ResNet50 [15].

Link Representation. The occurrence of vertical texts is not common in Latin
texts, but it is frequently found in East Asian languages like Chinese, Japanese,
and Korean. In this work, a binary center line is used to connect the sequen-
tial character regions. This change was made because employing the original
affinity maps on vertical texts often produced ill-posed perspective transforma-
tion that generated invalid box coordinates. To generate ground truth linkmap,
a line segment with thickness t is drawn between adjacent characters. Here,
t = max((d1 + d2)/2 ∗ α, 1), where d1 and d2 are the diagonal lengths of adja-
cent character boxes and α is the scaling coefficient. Use of the equation lets the
width of the center line proportional to the size of the characters. We set α as
0.1 in our implementation.
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Orientation Estimation. It is important to obtain the right orientation of
text boxes since the recognition stage requires well-defined box coordinates to
recognize the text properly. To this end, we add two-channel outputs in the
detection stage; channel is used to predict angles of characters along the x-axis,
y-axis each. To generate the ground truth of orientation map, the upward angle
of the GT character bounding box is represented as θ∗

box, the channel predicting
x-axis has a value of S∗

cos(p) = (cos θ+1)×0.5, and the channel predicting y-axis
has a value of S∗

sin(p) = (sin θ + 1) × 0.5. The ground truth orientation map is
generated by filling the pixels p in the region of the word box with the values of
S∗

cos(p) and S∗
sin(p). The trigonometric function is not directly used to let the

channels have the same output range with the region map and the link map;
between 0 and 1.

The loss function for orientation map is calculated by Eq. 1.

Lθ = S∗
r (p) · (||Ssin(p) − S∗

sin(p)||22 + ||Scos(p) − S∗
cos(p)||22) (1)

where S∗
sin(p) and S∗

cos(p) denote the ground truth of text orientation. Here, the
character region score Sr(p) is used as a weighting factor because it represents
the confidence of the character centeredness. By doing this, the orientation loss
is calculated only in the positive character regions.

The final objective function in the detection stage Ldet is defined as,

Ldet = Lr + Ll + λLθ (2)

where Lr and Ll denote character region loss and link loss, which are exactly
same in [2]. The Lθ is the orientation loss, and is multiplied with λ to control
the weight. In our experiment, we set λ to 0.1.

Fig. 3. Schematic illustration of the backbone network and the detection head.

The architecture of the backbone and modified detection head is illustrated
in Fig. 3. The final output of the detector has four channels, each represent-
ing character region map Sr, character link map Sl, and two orientation maps
Ssin, Scos.

During inference, we apply the same post-processing as described in [2] to
obtain text bounding boxes. First, by using predefined threshold values, we make
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binary maps of character region map Sr and character link map Sl. Then, using
the two maps, the text blobs are constructed by using connected components
labeling (CCL). The final boxes are obtained by finding a minimum bounding
box enclosing each text blob. We additionally determine the orientation of the
bounding box by utilizing pixel-wise averaging scheme. As shown in the Eq. 3,
the angle of the text box is found by taking the arctangent of accumulated sine
and cosine values at the predicted orientation map.

θbox = arctan
(∑

(Sr(p) × (Ssin(p) − 0.5)∑
(Sr(p) × (Scos(p) − 0.5)

)
(3)

θbox denotes orientation of the text box, Scos and Ssin are the 2-ch orientation
outputs. The same character centerdeness-based weighting scheme that used in
the loss calculation is applied to predict the orientation as well.

3.3 Sharing Stage

Sharing stage consists of two modules: text rectification module and charac-
ter region attention(CRA) modules. To rectify arbitrarily-shaped text region, a
thin-plate spline (TPS) [37] transformation is used. Inspired by the work of [46],
our rectification module incorporates iterative-TPS to acquire a better represen-
tation of the text region. By updating the control points attractively, the curved
geometry of a text in an image becomes ameliorated. Through empirical studies,
we discover that three TPS iterations are sufficient for rectification.

Typical TPS module takes an word image as input, but we feed the character
region map and link map since they encapsulate geometric information of the
text regions. We use twenty control points to tightly cover the curved text region.
To use these control points as a detection result, they are transformed to the
original input image coordinate. We optionally perform 2D polynomial fitting to
smooth the bounding polygon. Examples of iterative-TPS and final smoothed
polygon output are shown in Fig. 4.

Fig. 4. Example of iterative TPS. The middle rows show TPS control points on each
iteration, and the bottom row shows rectified images on each stage. The control points
are drawn in the image level for better visualization. Actual rectification is done in the
feature space. Final result was smoothed using a 2D polynomial.
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CRA module is the key component that tightly couples detection and recog-
nition modules. By simply concatenating rectified character score map with fea-
ture representation, the model establishes following advantages. Creating a link
between detector and recognizer allows recognition loss to propagate through
detection stage, and this improves the quality of character score map. Also,
attaching character region map to the feature helps recognizer attend better
to the character regions. Ablation study of using this module will be discussed
further in the experiment section.

3.4 Recognition Stage

The modules in the recognition stage are formed based on the results reported
in [1]. There are three components in the recognition stage: feature extrac-
tion, sequence modeling, and prediction. The feature extraction module is made
lighter than a solitary recognizer since it takes high-level semantic features as
input.

Detailed architecture of the module is shown in Table 1. After extracting the
features, a bidirectional LSTM is applied for sequence modeling, and attention-
based decoder makes a final text prediction.

Table 1. A simplified ResNet feature extraction module.

Layers Configurations Output

Input Pooled feature 64 × 16 × 130

Block1

[
c :256, k :3 × 3

c :256, k :3 × 3

]
× 2 64 × 16 × 256

Conv1 c: 256 k: 3 × 3 64 × 16 × 256

MaxPool k: 2 × 2 65 × 8 × 256

s: 1 × 2 p: 1 × 0

Block2

[
c :512, k :3 × 3

c :256, k :3 × 3

]
× 5 65 × 8 × 512

Conv2 c: 512 k: 3 × 3 65 × 8 × 512

Block3

[
c :512, k :3 × 3

c :512, k :3 × 3

]
× 3 65 × 8 × 512

Conv3 c: 512 k: 2 × 2 65 × 4 × 512

s: 1 × 2 p: 1 × 0

Conv4 c: 512 k: 2 × 2 65 × 3 × 512

s: 1 × 1 p: 0 × 0

AvgPool k: 1 × 3 65 × 1 × 512

s: 1 × 2 p: 1 × 0

At each time step, attention-based recognizer decodes textual information by
masking attention outputs to the features. Although attention module works well



512 Y. Baek et al.

in most cases, it fails to predict characters when attention points are misaligned
or vanished [5,14]. Figure 5 shows the effect of using CRA module. Well-placed
attention points allow robust text prediction.

Fig. 5. Attention problems with and without Character Region Attention module. The
red dots represent attention points of the decoding characters. Missing characters are
colored in blue, and misrecognized characters are colored in red. The cropped images
are slightly different since generated control points in each rectification modules are
inconsistent. (Color figure online)

The objective function, Lreg, in the recognition stage is

Lreg = −
∑

i

log p(Yi|Xi) (4)

where p(Yi|Xi) indicates the generation probability of the character sequence,
Yi, from the cropped feature representation, Xi of the i-th word box.

The final loss, L, used for training is composed of detection loss and recog-
nition loss by taking L = Ldet + Lreg. The overall flow of the recognition loss is
shown in Fig. 6. The loss flows through the weights in the recognition stage, and
propagates towards detection stage through Character Region Attention module.
Detection loss on the other hand is used as an intermediate loss, and thus the
weights before detection stage are updated using both detection and recognition
losses.

Fig. 6. The entire loss flow of CRAFTS model.
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4 Experiment

4.1 Datasets

English Datasets. IC13 [20] dataset consists of high-resolution images, 229
for training and 233 for testing. A rectangular box is used to annotate word-
level text instances. IC15 [20] consists of 1000 training and 500 testing images.
A quadrilateral box is used to annotate word-level text instances. TotalText [7]
has 1255 training and 300 testing images. Unlike IC13 and IC15 datasets, it
contains curved text instances and is annotated using polygon points.

Multi-language Dataset. IC19 [33] dataset contains 10,000 training and
10,000 testing images. The dataset contains texts in 7 different languages and is
annotated using quadrilateral points.

4.2 Training Strategy

We jointly train both the detector and recognizer in the CRAFTS model. To train
the detection stage, we follow the weakly-supervised training method described
in [2]. The recognition loss is calculated by making a batch of randomly sampled
cropped word features in each image. Maximum number of words per image is
set to 16 to prevent out-of-memory error. Data augmentations in the detector
apply techniques like crops, rotations, and color variations. For the recognizer,
the corner points of the ground truth boxes are perturbed in a range between 0
to 10% of the shorter length of the box.

Table 2. Results on horizontal Latin datasets. ∗ denote the results based on multi-
scale tests. R, P, and H refer to recall, precision and H-mean, and S, W, and G indicate
strongly-, weakly- and generic-contextualization results, respectively. The best score is
highlighted in bold. The evaluation metric of ICDAR 2013 detection task is DetEval,
and IoU metric is used for other three cases. FPS is for reference only due to the
different experimental environments.

Method IC13 (Det) IC13 (E2E) IC15 (Det) IC15 (E2E) FPS

R P H S W G R P H S W G

Deep TextSpotter [3] – – – 89 86 77 – – – 54 51 47 9

TextBoxes++∗ [24] 86 92 89 93 92 85 78.5 87.8 82.9 73.3 65.8 51.9 –

TextNet∗ [42] 89.1 93.6 91.3 89.7 88.8 82.9 80.8 85.7 83.2 78.6 74.9 60.4 2.7

EAA [14] 89 91 90 91 89 86 86 87 87 82 77 63 –

TextDragon [10] – – – – – – 83.7 92.4 87.8 82.5 78.3 65.1 –

FOTS∗ [29] – – 92.8 91.9 90.1 84.7 87.9 91.8 89.8 83.5 79.1 65.3 7.5

Li et al. [22] 80.5 91.4 85.6 92.5 91.2 84.9 – – – 84.4 78.9 66.1 1.3

Qin et al. [34] – – – – – – 87.9 91.6 89.7 85.5 81.9 69.9 4.7

CharNet∗ [44] – – – – – – 90.4 92.6 91.5 85.0 81.2 71.0 –

MaskTextSpotter∗ [23] 89.5 94.8 92.1 93.3 91.3 88.2 87.3 86.6 87.0 83.0 77.7 73.5 2.0

CRAFTS (ours) 90.9 96.1 93.4 94.2 93.8 92.2 85.3 89.0 87.1 83.1 82.1 74.9 5.4
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The model is first trained on the SynthText dataset [12] for 50k iterations,
and we further train the network on target datasets. Adam optimizer is used,
and On-line Hard Negative Mining (OHEM) [39] is applied to enforce 1:3 ratio
of positive and negative pixels in the detection loss. When fine-tuning the model,
SynthText dataset is mixed with the ratio of 1:5. We take 94 characters to cover
alphabets, numbers, and special characters, and take 4267 characters for the
multi-language dataset.

4.3 Experimental Results

Horizontal Datasets (IC13, IC15). To target the IC13 benchmark, we take
the model trained on the SynthText dataset and perform finetuning on IC13 and
IC19 datasets. During inference, we resize the longer side of the input to 1280.
The results show significant increase in performance when compared with the
previous state-of-the-art works.

The model trained on IC13 dataset is then fine-tuned on the IC15 dataset.
During the evaluation process, the input size of the model is set to 2560 × 1440.
Note that we perform generic evaluation without the generic vocabulary set. The
quantitative results on IC13 and IC15 datasets are listed in Table 2.

Our method surpasses previous methods in both generic and weakly- con-
textualization end-to-end tasks, and shows comparable results in other tasks.
The generic performance is meaningful because a vocabulary set is not provided
in practical scenarios. Note that we get slightly low detection scores on IC15
dataset and also observe low performance in strongly-contextualization results.
The relatively low detection performance is obtained mainly due to the granu-
larity difference, and will be discussed further in the later section.

Curved Datasets (TotalText). From the model trained on IC13 dataset,
we further train the model on TotalText dataset. During inference, we resize the
longer side of the input to 1920, and the control points from rectification module
are used for detector evaluation. The qualitative results are shown in Fig. 7.
The character region map and the link map are illustrated using a heatmap,
and the weighted pixel-wise angle values are visualized in the HSV color space.
As it is shown in the figure, the network successfully localizes polygon regions
and recognizes characters in the curved text region. Two top-left figures show
successful recognition of fully rotated and highly curved text instances.

Quantitative results on TotalText dataset are listed in Table 3. DetEval
[7] evaluates the performance of the detector and modified IC15 evaluation
scheme measures the end-to-end performance. Our method outperforms pre-
viously reported methods by a large margin. Note that even without the vocab-
ulary set, the end-to-end result significantly exceeds the h-mean score by 8.0%.
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Table 3. Results on TotalText dataset. None means no lexicon is used for contextu-
alization. The full lexicon contains all words in the test set. ∗ indicates the multi-scale
inference, and † denotes models trained on the private datasets.

Method Detection E2E (None) E2E (Full)

R P H R P H H

TextDragon [10] 75.7 85.6 80.3 – – 48.4 74.8

TextNet [42] 59.4 68.2 63.5 56.4 51.9 54.0 –

Li et al. [22] 59.8 64.8 62.2 – – 57.8 –

MaskTextSpotter [23] 75.4 81.8 78.5 – – 65.3 77.4

CharNet∗ [44] 85.0 88.0 86.5 – – 69.2 –

Qin et al.† [34] 85.0 87.8 86.4 – – 70.7 –

CRAFTS (ours) 85.4 89.5 87.4 72.2 86.5 78.7 –

Multi-language Dataset (IC19). Evaluation on multiple languages is per-
formed using IC19-MLT dataset. The output channel in the prediction layer
of the recognizer was expanded to 4267 to handle the characters in Arabic,
Latin, Chinese, Japanese, Korean, Bangladesh, and Hindi. However, occurrence
of characters in the dataset is not evenly distributed. Among 4267 characters in
the training set, 1017 characters occur once in the dataset, and this insufficiency
makes it hard for the model to make accurate label predictions. To solve class
imbalance problem, we first freeze the weights in the detection stage and pre-
train the weights in the recognizer with other publicly available multi-language
datasets: SynthMLT, ArT, LSVT, ReCTS and RCTW [4,8,38,41]. We then let
the loss flow through the whole network and use IC19 dataset to finetune the
model. Since no paper reports performance, we compare our results with E2E-
MLT [4,33]. The samples from the IC19 dataset are shown in Fig. 8. We hope
our study is set as a baseline for future works on the IC19-MLT benchmark
(Table 4).

Table 4. Results on IC19-MLT dataset.

Method Detection E2E

R P H R P H

E2E-MLT [4] – – – 20.5 37.4 26.5

CRAFTS (ours) 70.1 81.7 75.5 48.5 72.9 58.2
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Fig. 7. Results on the TotalText dataset. First row: each column shows the input image
(top) with its respective region score map, link map, and orientation map.

4.4 Ablation Study

Attention Assisted by Character Region Attention. In this section, we
study how Character Region Attention(CRA) affects the performance of the
recognizer by training a separate network without CRA.

Table 5 shows the effect of using CRA on benchmark datasets. Without CRA,
we observe performance drops on all of the datasets. Especially on the perspec-
tive dataset (IC15) and the curved dataset (TotalText), we observe a greater

Table 5. The end-to-end performance comparisons of using character attention maps.
CRA denotes the use of Character Region Attention in recognition stage. R, P, and H
refers to Recall, Precision and Hmean values.

Dataset Type CRA R P H Gain

IC13 Horizontal – 89.2 94.8 91.9 –

� 89.5 95.0 92.2 +0.3

IC15 Perspective – 64.9 84.1 73.2 –

� 65.9 86.7 74.9 +1.7

TotalText Curved – 71.9 84.0 77.5 –

� 72.2 86.5 78.7 +1.2
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Fig. 8. Qualitative results on IC19 MLT dataset.

gap when compared with the horizontal dataset (IC13). This implies that feed-
ing character attention information improves the performance of the recognizer
when dealing with irregular texts.

Recognition Loss in the Detection Stage. The recognition loss flowing
through the detection stage affects the quality of the character region map and
character link map. It is expected that the recognition loss helps detector localize
character regions more explicitly. However, the improvement of character local-
ization is not clearly presented in word-level evaluation. Therefore, in order to
show individual character localization ability of the detector, we take advantage
of the pseudo-character box generation process in the CRAFT detector. When
generating pseudo-ground-truths, supervision network calculates the difference
between the number of generated pseudo characters with the number of ground-
truth characters in the word transcription. Table 6 shows number of character
error length on each dataset measured with fully trained networks.

Table 6. Comparison of character error length on each dataset with trained networks.

Dataset Total lengths SynthText w.o R-loss w. R-loss Diff.

ICDAR2015 46,107 9,324 1,251 1,147 −104 (−8.3%)

TotalText 53,645 16,385 5,050 4,521 −529 (−10.4%)

When training the network on SynthText dataset, character error length
on each dataset is large. Error decreases further as training is performed on
real datasets, but the value drops further by propagating recognition loss to
the detection stage. This implies that the use of Character Region Attention
improves the quality of the localization ability of the detector.
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Importance of Orientation Estimation. The orientation estimation is
important because there are many oriented texts in scene text images. Our pixel-
wise averaging scheme is very useful for the recognizer to receive well-defined
features. We compare the results of our model when the orientation information
is not used. On the IC15 dataset, the performance drops from 74.9% to 74.1%
(−0.8%), and on TotalText dataset, the h-mean value drops from 78.7% to 77.5%
(−1.2%). The results show that the use of accurate angle information escalates
performance on rotated texts.

4.5 Discussions

Inference Speed. Since inference speed varies depending on the input image
size, we measure the FPS on different input resolutions, each having a longer
side of 960, 1280, 1600, and 2560. The test results give FPS of 9.9, 8.3, 6.8,
and 5.4, respectively. For all experiments, we use Nvidia P40 GPU with Intel(R)
Xeon(R) CPU. When compared with the 8.6 FPS of the VGG based CRAFT
detector [2], the ResNet based CRAFTS network achieves higher FPS on the
same sized input. Also, directly using the control points from the rectification
module alleviates the need of post processing for polygon generation (Fig. 9).

Fig. 9. Failure cases in IC15 dataset due to granularity difference. Red boxes denote
detection results, cyan boxes denote ground truths. (Color figure online)

Granularity Difference Issue. We assume that the granularity difference
between the ground-truth and prediction box causes relatively low detection
performance on the IC15 dataset. Character-level segmentation methods tend to
generalize character connectivity based on space and color cues, and not capture
the whole feature of word instance. For this reason, the outputs do not follow
the annotation style of the boxes required by the benchmark. The Fig. 9 shows
the failure cases in the IC15 dataset, which proves that the detection results are
marked incorrect while we observe acceptable qualitative results.
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5 Conclusion

In this paper, we present an end-to-end trainable single pipeline model that
tightly couples detection and recognition modules. Character region attention in
the sharing stage fully exploit character region map to help recognizer rectify and
attend better to the text regions. Also, we design the recognition loss propagate
through detection stage and enhances the character localization ability of the
detector. In addition, the rectification module in the sharing stage enables fine
localization of curved texts, and obviates the need of developing hand crafted
post-processing. The experimental results validate state-of-the-art performance
of CRAFTS on various datasets.
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